184th WPI-IIIS Seminar

Inhibiting sleep to promote arousal

Sleep is an active process that involves delimited nodes of sleep-promoting cell populations, like galanin-expressing neurons in the ventrolateral preoptic area (VLPO). These neurons are essential for normal sleep and cortical slow wave activity. A highly influential circuit model for behavioral sleep-wake control is the 'flip-flop' model of sleep-state switching, proposing that sleep-wake transitions are regulated by reciprocal inhibition between sleep-promoting VLPO neurons and monoamine wake-promoting nodes in the hypothalamus and brainstem. While VLPO and monoamine neurons exhibit supportive reciprocal connections, VLPO also receives inputs from other brain regions involved in sleep-wake control. In this presentation, I will discuss our data on how VLPO neurons are regulated by afferent inputs and how the internal neuronal circuit within VLPO is crucial for controlling the galanin sleep-promoting neuronal population. I will present recent transcriptomic data aligned with our in vitro electrophysiological and CRACM circuit-based data. To conclude, I will present collaborative work with Dr. Fuller, demonstrating how several of these inputs to VLPO efficiently drive arousal. Our findings identify a novel polysynaptic circuit, including an intra-VLPO inhibitory circuit, through which inhibiting the VLPO galanin population can rapidly induce and sustain arousal. This study originates from several years of collaborative work between our two groups.

Dr. Elda Arrigoni

Department of Neurology Beth Israel Deaconess Medical Center

Date: Tuesday, September 12, 2023

Time: 11:00 - 12:00

Venue: 1F Auditorium, IIIS Building

*On-site participation only

